

NPN Silicon Power Transistor

High Voltage SWITCHMODE™ Series

Designed for use in electronic ballast (light ballast) and in Switchmode Power supplies up to 50 Watts. Main features include:

• Improved Efficiency Due to:

Low Base Drive Requirements (High and Flat DC Current Gain hFE) Low Power Losses (On–State and Switching Operations) Fast Switching: $t_{fi}=100$ ns (typ) and $t_{si}=3.2~\mu s$ (typ) @ $I_{C}=2.0~A,\,I_{B1}=I_{B2}=0.4~A$

- Full Characterization at 125°C
- Tight Parametric Distributions Consistent Lot-to-Lot

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Sustaining Voltage	VCEO	400	Vdc
Collector–Emitter Breakdown Voltage	VCES	700	Vdc
Emitter-Base Voltage	V _{EBO}	9.0	Vdc
Collector Current — Continuous — Peak(1)	I _C	5.0 10	Adc
Base Current	ΙΒ	2.0	Adc
Total Device Dissipation (T _C = 25°C) Derate above 25°C	P _D	75 0.6	Watts W/°C
Operating and Storage Temperature	TJ, T _{stg}	- 65 to 150	°C

THERMAL CHARACTERISTICS

Rating	Symbol	Max	Unit
Thermal Resistance — Junction to Case — Junction to Ambient	$R_{ heta J A}$	1.65 62.5	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit			
OFF CHARACTERISTICS								
Collector–Emitter Sustaining Voltage (I _C = 100 mA, L = 25 mH)	VCEO(sus)	400	_	_	Vdc			
Collector Cutoff Current (V _{CE} = Rated V _{CEO} , I _B = 0)	ICEO	_	_	100	μAdc			
Collector Cutoff Current (V _{CE} = Rated V _{CES} , V _{EB} = 0) (T _C = 125°C)	ICES	_	-	10 100	μAdc			
Emitter Cutoff Current (V _{EB} = 9.0 Vdc, I _C = 0)	I _{EBO}	_	_	100	μAdc			

⁽¹⁾ Pulse Test: Pulse Width = 5.0 ms, Duty Cycle $\leq 10\%$.

BUL45

POWER TRANSISTOR 5.0 AMPERES 700 VOLTS 35 and 75 WATTS

ELECTRICAL CHARACTERISTICS — **continued** (T_C = 25°C unless otherwise noted)

Characteristic				Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS								
Base–Emitter Saturation Volta	age (I _C = 1.0 Adc, I (I _C = 2.0 Adc, I			V _{BE} (sat)	_	0.84 0.89	1.2 1.25	Vdc
Collector–Emitter Saturation (IC = 1.0 Adc, IB = 0.2 Adc	-		(T _C = 125°C)	VCE(sat)	_	0.175 0.150	0.25 —	Vdc
	Collector–Emitter Saturation Voltage (I _C = 2.0 Adc, I _B = 0.4 Adc) (T _C = 125°C)				_	0.25 0.275	0.4	Vdc
DC Current Gain ($I_C = 0.3 \text{ Ac}$) ($I_C = 2.0 \text{ Ac}$) ($I_C = 10 \text{ mA}$)	hFE	14 — 7.0 5.0 10	— 32 14 12 22	34 — — — —	_			
DYNAMIC CHARACTERISTIC	s		•		•	•		
Current Gain Bandwidth (IC =	= 0.5 Adc, V _{CE} = 10	Vdc, f	= 1.0 MHz)	fΤ	_	12	_	MHz
Output Capacitance (V _{CB} = 1	10 Vdc, I _E = 0, f = 1	.0 MHz)		C _{ob}	_	50	75	pF
Input Capacitance (VEB = 8.0	0 Vdc)			C _{ib}	_	920	1200	pF
Dynamic Saturation Voltage:	(I _C = 1.0 Adc I _{B1} = 100 mAdc V _{CC} = 300 V)	1.0 μs	(T _C = 125°C)	VCE (Dyn sat)	_	1.75 4.4	_ _	
Determined 1.0 μs and 3.0 μs respectively after rising I _{B1} reaches 90% of final I _{B1}		3.0 μs	(T _C = 125°C)		_	0.5 1.0	_ _	\/d=
	(I _C = 2.0 Adc I _{B1} = 400 mAdc V _{CC} = 300 V)	1.0 μs	(T _C = 125°C)		_	1.85 6.0		Vdc
(see Figure 18)		3.0 μs	(T _C = 125°C)			0.5 1.0	_ _	

SWITCHING CHARACTERISTICS: Resistive Load

CHITOTIII CONANACI	ERISTICS. RESISTIVE LOAU						
Turn-On Time	$(I_C = 2.0 \text{ Adc}, I_{B1} = I_{B2} = 0.4 \text{ Ad})$ Pulse Width = 20 μs, Duty Cycle < 20%	$dc (T_C = 125^{\circ}C)$	^t on	<u> </u>	75 120	110 —	ns
Turn–Off Time	VCC = 300 V)	(T _C = 125°C)	^t off	_ _	2.8 3.5	3.5 —	μs
SWITCHING CHARACT	ERISTICS: Inductive Load (V _{CC}	= 15 Vdc, L _C = 3	200 μH, V _{clamp} =	= 300 Vdc)	•	•	
Fall Time	(I _C = 2.0 Adc, I _{B1} = 0.4 Adc I _{B2} = 0.4 Adc)	(T _C = 125°C)	t _{fi}	70 —	 200	170 —	ns
Storage Time		(T _C = 125°C)	t _{Si}	2.6 —	 4.2	3.8	μs
Crossover Time		(T _C = 125°C)	t _C	_ _	230 400	350 —	ns
Fall Time	$(I_C = 1.0 \text{ Adc}, I_{B1} = 100 \text{ mAdc}$ $I_{B2} = 0.5 \text{ Adc})$	(T _C = 125°C)	t _{fi}	-	110 100	150 —	ns
Storage Time		(T _C = 125°C)	t _{Si}	_ _	1.1 1.5	1.7	μs
Crossover Time		(T _C = 125°C)	t _C	_ _	170 170	250 —	ns
Fall Time	$(I_C = 2.0 \text{ Adc}, I_{B1} = 250 \text{ mAdc})$ $I_{B2} = 2.0 \text{ Adc})$	(T _C = 125°C)	t _{fi}	_	80	120	ns
Storage Time		(T _C = 125°C)	t _{Si}	_	0.6	0.9	μs
Crossover Time		(T _C = 125°C)	t _C	_	175	300	ns

TYPICAL STATIC CHARACTERISTICS

Figure 1. DC Current Gain @ 1 Volt

Figure 2. DC Current Gain at @ 5 Volts

Figure 3. Collector-Emitter Saturation Region

Figure 4. Collector-Emitter Saturation Voltage

Figure 5. Base-Emitter Saturation Region

Figure 6. Capacitance

TYPICAL SWITCHING CHARACTERISTICS (IB2 = IC/2 for all switching)

Figure 7. Resistive Switching, ton

Figure 8. Resistive Switching, toff

Figure 9. Inductive Storage Time, tsi

Figure 10. Inductive Storage Time, tsi(hFE)

Figure 11. Inductive Switching, t_C & t_{fi}, I_C/I_B = 5

Figure 12. Inductive Switching, t_C & t_{fi}, I_C/I_B = 10

TYPICAL SWITCHING CHARACTERISTICS (IB2 = IC/2 for all switching)

Figure 13. Inductive Fall Time, tfi(hFE)

Figure 14. Crossover Time

GUARANTEED SAFE OPERATING AREA INFORMATION

Figure 15. Forward Bias Safe Operating Area

Figure 16. Reverse Bias Switching Safe Operating Area

Figure 17. Forward Bias Power Derating

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 15 is based on $T_C = 25^{\circ}C$; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C \ge 25$ °C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown in Figure 15 may be found at any case temperature by using the appropriate curve on Figure 17. $T_{J(pk)}$ may be calculated from the data in Figures 20. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn-off with the baseto-emitter junction reverse-biased. The safe level is specified as a reverse-biased safe operating area (Figure 16). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.

Figure 18. Dynamic Saturation Voltage Measurements

Figure 19. Inductive Switching Measurements

Table 1. Inductive Load Switching Drive Circuit

Figure 20. Typical Thermal Response ($Z_{\theta JC}(t)$) for BUL45

The BUL45 Bipolar Power Transistors were specially designed for use in electronic lamp ballasts. A circuit designed by ON Semiconductor applications was built to

Secondaries: T1A: 4 turns

T1B: 4 turns

demonstrate how well these devices operate. The circuit and detailed component list are provided below.

Components Lists

Q1 =	Q2 = BUL45 Transistor	All resistors are 1/4 Watt, ±5%		
D1 =	1N4007 Rectifier	R1 =	470 kΩ	
D2 =	1N5761 Rectifier	R2 =	$R3 = 47 \Omega$	
D3 =	D4 = MUR150	R4 =	R5 = 1 Ω (these resistors are optional, and	
D5 =	D6 = MUR105		might be replaced by a short circuit)	
D7 =	D8 = D9 = D10 = 1N400	C1 =	22 μF/385 V	
CTN =	47 Ω @ 25°C	C2 =	0.1 μF	
L =	RM10 core, A1 = 400, B51 (LCC) 75 turns,	C3 =	10 nF/1000 V	
	wire $\emptyset = 0.6 \text{ mm}$	C4 =	15 nF/1000 V	
T1 =	FT10 toroid, T4A (LCC)	C5 =	$C6 = 0.1 \mu F/400 V$	
	Primary: 4 turns			

NOTES:

- 1. Since this design does not include the line input filter, it cannot be used "as-is" in a practical industrial circuit.
- 2. The windings are given for a 55 Watt load. For proper operation they must be re-calculated with any other loads.

Figure 21. Application Example

PACKAGE DIMENSIONS

TO-220AB **CASE 221A-09 ISSUE AA**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

Notes

Notes

SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax:** 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.